David Samadi, MD - Blog | Prostate Health, Prostate Cancer & Generic Health Articles by Dr. David Samadi - SamadiMD.com|

View Original

New MRI Technique for Prostate Cancer

A novel magnetic resonance imaging (MRI) method that detects low levels of zinc ion can help distinguish healthy prostate tissue from cancer, UT Southwestern Medical Center radiologists have determined.

Typical MRIs don't reliably distinguish between zinc levels in healthy, malignant, and benign hyperplastic prostate tissue, so discovery of the technique could eventually prove useful as a biomarker to track the progression of prostate cancer, according to researchers with the Advanced Imaging Research Center, part of UT Southwestern's Harold C. Simmons Comprehensive Cancer Center.

"This research provides the basis for differentiating healthy prostate from prostate cancer by use of a novel Zn(II) ion sensing molecule and MRI," said senior author Dr. A. Dean Sherry, Director of the Advanced Imaging Research Center and Professor of Radiology at UT Southwestern.

The findings appear in the Proceedings of the National Academy of Sciences.

"The potential for translating this method to human clinical imaging is very good, and will be useful for diagnostic purposes. The method may prove useful for monitoring therapies used to treat prostate cancer," said Dr. Sherry, who is also Professor of Chemistry at UT Dallas.

The majority of prostate cancers are classified as adenocarcinomas and originate in epithelial cells. The UTSW researchers initially determined that glucose stimulates release of the zinc ions from inside epithelial cells, which they could then track on MRIs. The prostate cancer tissue secreted lower levels of zinc ions, offering an opportunity to distinguish between malignant and healthy tissue. When they tested the technique on mouse models, they were able to successfully detect small malignant lesions as early as 11 weeks, making the non-invasive imaging procedure a potentially useful method for detecting the disease and its progression.

"Prostate cancer often has no early symptoms, so identifying potential new diagnostic methods that might catch the cancer at an earlier stage or allow us to track how it is progressing is an important opportunity," said co-author Dr. Neil Rofsky, Chairman of Radiology.

Prostate cancer is the most common cancer in men in the United States, after skin cancer, and is the second leading cause of death from cancer in men, according to the National Cancer Institute. Prostate cancer occurs more often in African-American men, who are more likely to die from the disease.

Magnetic resonance imaging, which uses only harmless magnetic fields and radio waves, is one of the most benign technologies in medicine for studying and diagnosing medical disorders, enabling researchers to view diseases that afflict millions of people, without the need for surgery, X-rays, or radioactive tracers.